Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1106474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793419

RESUMO

The expression of Prx1 has been used as a marker to define the skeletal stem cells (SSCs) populations found within the bone marrow and periosteum that contribute to bone regeneration. However, Prx1 expressing SSCs (Prx1-SSCs) are not restricted to the bone compartments, but are also located within the muscle and able to contribute to ectopic bone formation. Little is known however, about the mechanism(s) regulating Prx1-SSCs that reside in muscle and how they participate in bone regeneration. This study compared both the intrinsic and extrinsic factors of the periosteum and muscle derived Prx1-SSCs and analyzed their regulatory mechanisms of activation, proliferation, and skeletal differentiation. There was considerable transcriptomic heterogeneity in the Prx1-SSCs found in muscle or the periosteum however in vitro cells from both tissues showed tri-lineage (adipose, cartilage and bone) differentiation. At homeostasis, periosteal-derived Prx1 cells were proliferative and low levels of BMP2 were able to promote their differentiation, while the muscle-derived Prx1 cells were quiescent and refractory to comparable levels of BMP2 that promoted periosteal cell differentiation. The transplantation of Prx1-SCC from muscle and periosteum into either the same site from which they were isolated, or their reciprocal sites showed that periosteal cell transplanted onto the surface of bone tissues differentiated into bone and cartilage cells but was incapable of similar differentiation when transplanted into muscle. Prx1-SSCs from the muscle showed no ability to differentiate at either site of transplantation. Both fracture and ten times the BMP2 dose was needed to promote muscle-derived cells to rapidly enter the cell cycle as well as undergo skeletal cell differentiation. This study elucidates the diversity of the Prx1-SSC population showing that cells within different tissue sites are intrinsically different. While muscle tissue must have factors that promote Prx1-SSC to remain quiescent, either bone injury or high levels of BMP2 can activate these cells to both proliferate and undergo skeletal cell differentiation. Finally, these studies raise the possibility that muscle SSCs are potential target for skeletal repair and bone diseases.

2.
Front Oncol ; 12: 929498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880162

RESUMO

Past studies described interactions between normal megakaryocytes, the platelet precursors, and bone cell precursors in the bone marrow. This relationship has also been studied in context of various mutations associated with increased number of megakaryocytes. The current study is the first to examine the effects of megakaryocytes from transgenic mice carrying the most common mutation that causes primary myelofibrosis (PMF) in humans (JAK2V617F) on bone cell differentiation. Organ level assessments of mice using micro-computed tomography showed decreased bone volume in JAK2V617F males, compared to matching controls. Tissue level histology revealed increased deposition of osteoid (bone matrix prior mineralization) in these mutated mice, suggesting an effect on osteoblast differentiation. Mechanistic studies using a megakaryocyte-osteoblast co-culture system, showed that both wild type or JAK2V617F megakaryocytes derived from male mice inhibited osteoblast differentiation, but JAK2V617F cells exerted a more significant inhibitory effect. A mouse mRNA osteogenesis array showed increased expression of Noggin, Chordin, Alpha-2-HS-glycoprotein, Collagen type IV alpha 1 and Collagen type XIV alpha 1 (mostly known to inhibit bone differentiation), and decreased expression of alkaline phosphatase, Vascular cell adhesion molecule 1, Sclerostin, Distal-less homeobox 5 and Collagen type III alpha 1 (associated with osteogenesis) in JAK2V617F megakaryocytes, compared to controls. This suggested that the mutation re-programs megakaryocytes to express a cluster of genes, which together could orchestrate greater suppression of osteogenesis in male mice. These findings provide mechanistic insight into the effect of JAK2V617F mutation on bone, encouraging future examination of patients with this or other PMF-inducing mutations.

3.
J Bone Miner Res ; 37(8): 1500-1510, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35695880

RESUMO

Osteoporosis, characterized by low bone mineral density (BMD), is the most common complex disease affecting bone and constitutes a major societal health problem. Genome-wide association studies (GWASs) have identified over 1100 associations influencing BMD. It has been shown that perturbations to long noncoding RNAs (lncRNAs) influence BMD and the activities of bone cells; however, the extent to which lncRNAs are involved in the genetic regulation of BMD is unknown. Here, we combined the analysis of allelic imbalance (AI) in human acetabular bone fragments with a transcriptome-wide association study (TWAS) and expression quantitative trait loci (eQTL) colocalization analysis using data from the Genotype-Tissue Expression (GTEx) project to identify lncRNAs potentially responsible for GWAS associations. We identified 27 lncRNAs in bone that are located in proximity to a BMD GWAS association and harbor single-nucleotide polymorphisms (SNPs) demonstrating AI. Using GTEx data we identified an additional 31 lncRNAs whose expression was associated (false discovery rate [FDR] correction < 0.05) with BMD through TWAS and had a colocalizing eQTL (regional colocalization probability [RCP] > 0.1). The 58 lncRNAs are located in 43 BMD associations. To further support a causal role for the identified lncRNAs, we show that 23 of the 58 lncRNAs are differentially expressed as a function of osteoblast differentiation. Our approach identifies lncRNAs that are potentially responsible for BMD GWAS associations and suggest that lncRNAs play a role in the genetics of osteoporosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteoporose , RNA Longo não Codificante , Densidade Óssea/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Osteoporose/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética
4.
J Cell Physiol ; 237(5): 2550-2560, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35338481

RESUMO

Currently, there is no consensus whether there is a single or multiple postnatal stem cell population(s) that contribute to skeletal homeostasis and postnatal bone formation. A known population of cells that express Prx1 contributes to postnatal bone formation. Prx1 expression also connotes calvaria and appendicular tissues during embryonic development. A transgenic tamoxifen inducible Prx1 reporter mouse was used for lineage tracking, to characterize the postnatal contribution of Prx1 expressing cells in skeletal homeostasis and bone formation. Under homeostatic conditions Prx1 labeling gave rise to a transient yet rapid turnover cell population at the periosteal and endosteal surfaces, along muscle fibers, and within the medial layers of vessels both within the muscle and marrow compartments of the appendicular skeleton. Fracture and ectopic bone formation of both fore and hind limbs showed recruitment and expansion of Prx1-derived cells in newly formed bone tissues. Prx1 labeled cells were limited or absent at axial skeletal sites during both homeostasis and after induction of bone formation. Last, Prx1-derived cells differentiated into multiple cell lineages including vascular smooth muscle, adipose, cartilage, and bone cells. These results show that Prx1 expression retained its embryonic tissue specification and connotes a stem/progenitor cell populations of mesenchymal tissue progenitors.


Assuntos
Cartilagem , Proteínas de Homeodomínio/metabolismo , Células-Tronco , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Camundongos , Camundongos Transgênicos , Gravidez , Crânio , Células-Tronco/metabolismo
5.
JBMR Plus ; 6(2): e10579, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35229061

RESUMO

Time is a central element of the sexual dimorphic patterns of development, pathology, and aging of the skeleton. Because the transcriptome is a representation of the phenome, we hypothesized that both sex and sex-specific temporal, transcriptomic differences in bone tissues over an 18-month period would be informative to the underlying molecular processes that lead to postnatal sexual dimorphism. Regardless of age, sex-associated changes of the whole bone transcriptomes were primarily associated not only with bone but also vascular and connective tissue ontologies. A pattern-based approach used to screen the entire Gene Expression Omnibus (GEO) database against those that were sex-specific in bone identified two coordinately regulated gene sets: one related to high phosphate-induced aortic calcification and one induced by mechanical stimulation in bone. Temporal clustering of the transcriptome identified two skeletal tissue-associated, sex-specific patterns of gene expression. One set of genes, associated with skeletal patterning and morphology, showed peak expression earlier in females. The second set of genes, associated with coupled remodeling, had quantitatively higher expression in females and exhibited a broad peak between 3 to 12 months, concurrent with the animals' reproductive period. Results of phenome-level structural assessments of the tibia and vertebrae, and in vivo and in vitro analysis of cells having osteogenic potential, were consistent with the existence of functionally unique, skeletogenic cell populations that are separately responsible for appositional growth and intramedullary functions. These data suggest that skeletal sexual dimorphism arises through sex-specific, temporally different processes controlling morphometric growth and later coupled remodeling of the skeleton during the reproductive period of the animal. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Bone Rep ; 16: 101155, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34984214

RESUMO

Osteoarthritis (OA) is known to involve profound changes in bone density and microstructure near to, and even distal to, the joint. Critically, however, a full, spatial picture of these abnormalities has not been well documented in a quantitative fashion in hip OA. Here, micro-computed tomography (44.8 µm/voxel) and data-driven computational anatomy were used to generate 3-D maps of the distribution of bone density and microstructure in human femoral neck samples with early (6F/4M, mean age = 51.3 years), moderate (14F/8M, mean age = 60 years), and severe (16F/6M, mean age = 63.3 years) radiographic OA. With increasing severity of radiographic OA, there was decreased cortical bone mineral density (BMD) (p=0.003), increased cortical thickness (p=0.001), increased cortical porosity (p=0.0028), and increased cortical cross-sectional area (p=0.0012, due to an increase in periosteal radius (p=0.018)), with no differences detected in the total femoral neck or trabecular compartment measures. No OA-related region-specific differences were detected through Statistical Parametric Mapping, but there were trends towards decreased tissue mineral density (TMD) in the inferior femoral neck with increasing OA severity (0.050 < p ≤ 0.091), possibly due to osteophytes. Overall, the lack of differences in cortical TMD among radiographic OA groups indicated that the decrease in cortical BMD with increasing OA severity was largely due to the increased cortical porosity rather than decreased tissue mineralization. As porosity is inversely associated with stiffness and strength in cortical bone, increased porosity may offset the effect that increased cortical cross-sectional area would be expected to have on reducing stresses within the femoral neck. The use of high-resolution imaging and quantitative spatial assessment in this study provide insight into the heterogeneous and multi-faceted changes in density and microstructure in hip OA, which have implications for OA progression and fracture risk.

7.
Front Genet ; 12: 680537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220953

RESUMO

GNAS encodes the stimulatory G protein alpha-subunit (Gsα) and its large variant XLαs. Studies have suggested that XLαs is expressed exclusively paternally. Thus, XLαs deficiency is considered to be responsible for certain findings in patients with paternal GNAS mutations, such as pseudo-pseudohypoparathyroidism, and the phenotypes associated with maternal uniparental disomy of chromosome 20, which comprises GNAS. However, a study of bone marrow stromal cells (BMSC) suggested that XLαs could be biallelically expressed. Aberrant BMSC differentiation due to constitutively activating GNAS mutations affecting both Gsα and XLαs is the underlying pathology in fibrous dysplasia of bone. To investigate allelic XLαs expression, we employed next-generation sequencing and a polymorphism common to XLαs and Gsα, as well as A/B, another paternally expressed GNAS transcript. In mouse BMSCs, Gsα transcripts were 48.4 ± 0.3% paternal, while A/B was 99.8 ± 0.2% paternal. In contrast, XLαs expression varied among different samples, paternal contribution ranging from 43.0 to 99.9%. Sample-to-sample variation in paternal XLαs expression was also detected in bone (83.7-99.6%) and cerebellum (83.8 to 100%) but not in cultured calvarial osteoblasts (99.1 ± 0.1%). Osteoblastic differentiation of BMSCs shifted the paternal XLαs expression from 83.9 ± 1.5% at baseline to 97.2 ± 1.1%. In two human BMSC samples grown under osteoinductive conditions, XLαs expression was also predominantly monoallelic (91.3 or 99.6%). Thus, the maternal GNAS contributes significantly to XLαs expression in BMSCs but not osteoblasts. Altered XLαs activity may thus occur in certain cell types irrespective of the parental origin of a GNAS defect.

8.
Methods Mol Biol ; 2230: 17-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197006

RESUMO

The study of postnatal skeletal repair is of immense clinical interest. Optimal repair of skeletal tissue is necessary in all varieties of elective and reparative orthopedic surgical treatments. However, the repair of fractures is unique in this context in that fractures are one of the most common traumas that humans experience and are the end-point manifestation of osteoporosis, the most common chronic disease of aging. In the first part of this introduction the basic biology of fracture healing is presented. The second part discusses the primary methodological approaches that are used to examine repair of skeletal hard tissue and specific considerations for choosing among and implementing these approaches.


Assuntos
Consolidação da Fratura , Fraturas Ósseas/terapia , Sistema Musculoesquelético/fisiopatologia , Osteoporose/terapia , Envelhecimento/patologia , Fraturas Ósseas/fisiopatologia , Humanos , Osteoporose/fisiopatologia
9.
Methods Mol Biol ; 2230: 63-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197008

RESUMO

The most common procedure that has been developed for use in rats and mice to model fracture healing is described. The nature of the regenerative processes that may be assessed and the types of research questions that may be addressed with this model are briefly outlined. The detailed surgical protocol to generate closed simple transverse fractures is presented and general considerations when setting up an experiment using this model are described.


Assuntos
Consolidação da Fratura/fisiologia , Fraturas Fechadas/cirurgia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Fraturas Fechadas/fisiopatologia , Humanos , Masculino , Camundongos , Ratos
10.
Sci Rep ; 10(1): 20179, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214607

RESUMO

In the United States, 5-12% of adults have at least one symptom of temporomandibular joint (TMJ) disorders, including TMJ osteoarthritis (TMJ-OA). However, there is no chondroprotective agent that is approved for clinical application. We showed that LOXL2 is elevated in the regenerative response during fracture healing in mice and has a critical role in chondrogenic differentiation. Indeed, LOXL2 is an anabolic effector that attenuates pro-inflammatory signaling in OA cartilage of the TMJ and knee joint, induces chondroprotective and regenerative responses, and attenuates NF-kB signaling. The specific goal of the study was to evaluate if adenoviral delivery of LOXL2 is anabolic to human and mouse TMJ condylar cartilage in vivo and evaluate the protective and anabolic effect on cartilage-specific factors. We employed two different models to assess TMJ-OA. In one model, clinical TMJ-OA cartilage from 5 different samples in TMJ-OA cartilage plugs were implanted subcutaneously in nude mice. Adenovirus LOXL2 -treated implants showed higher mRNA levels of LOXL2, ACAN, and other anabolic genes compared to the adenovirus-Empty-treated implants. Further characterization by RNA-seq analysis showed LOXL2 promotes proteoglycan networks and extracellular matrix in human TMJ-OA cartilage implants in vivo. In order to evaluate if LOXL2-induced functional and sex-linked differences, both male and female four-month-old chondrodysplasia (Cho/+) mice, which develop progressive TMJ-OA due to a point mutation in the Col11a1 gene, were subjected to intraperitoneal injection with Adv-RFP-LOXL2 every 2 weeks for 12 weeks. The data showed that adenovirus delivery of LOXL2 upregulated LOXL2 and aggrecan (Acan), whereas MMP13 expression was slightly downregulated. The fold change expression of Acan and Runx2 induced by Adv-RFP-LOXL2 was higher in females compared to males. Interestingly, Adv-RFP-LOXL2 injection significantly increased Rankl expression in male but there was no change in females, whereas VegfB gene expression was increased in females, but not in males, as compared to those injected with Adv-RFP-Empty in respective groups. Our findings indicate that LOXL2 can induce specifically the expression of Acan and other anabolic genes in two preclinical models in vivo. Further, LOXL2 has beneficial functions in human TMJ-OA cartilage implants and promotes gender-specific anabolic responses in Cho/+ mice with progressive TMJ-OA, suggesting its merit for further study as an anabolic therapy for TMJ-OA.


Assuntos
Agrecanas/metabolismo , Aminoácido Oxirredutases/metabolismo , Cartilagem Articular/patologia , Osteoartrite/patologia , Transtornos da Articulação Temporomandibular/metabolismo , Adenoviridae/genética , Idoso , Aminoácido Oxirredutases/administração & dosagem , Aminoácido Oxirredutases/genética , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/transplante , Condrócitos/metabolismo , Colágeno/genética , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Metabolismo/genética , Camundongos Mutantes , Camundongos Nus , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Caracteres Sexuais , Transtornos da Articulação Temporomandibular/patologia
11.
Bioinformatics ; 35(5): 778-786, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101356

RESUMO

MOTIVATION: Clustering algorithms like K-Means and standard Gaussian mixture models (GMM) fail to account for the structure of variability of replicated data or repeated measures over time. Additionally, a priori cluster number assumptions add an additional complexity to the process. Current methods to optimize cluster labels and number can be inaccurate or computationally intensive for temporal gene expression data with this additional variability. RESULTS: An extension to a model-based clustering algorithm is proposed using mixtures of mixed effects polynomial regression models and the EM algorithm with an entropy penalized log-likelihood function (EPEM). The EPEM is used to cluster temporal gene expression data with this additional variability. The addition of random effects in our model decreased the misclassification error when compared to mixtures of fixed effects models or other methods such as K-Means and GMM. Applying our method to microarray data from a fracture healing study revealed distinct temporal patterns of gene expression. AVAILABILITY AND IMPLEMENTATION: https://github.com/darlenelu72/EPEM-GMM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Análise por Conglomerados , Perfilação da Expressão Gênica , Funções Verossimilhança , Modelos Estatísticos , Distribuição Normal
12.
Sci Rep ; 8(1): 13756, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213970

RESUMO

Transcriptomic analysis showed that the central circadian pathway genes had significantly altered expression in fracture calluses from mice fed a low phosphate diet. This led us to hypothesize that phosphate deficiency altered the circadian cycle in peripheral tissues. Analysis of the expression of the central clock genes over a 24-36 hour period in multiple peripheral tissues including fracture callus, proximal tibia growth plate and cardiac tissues after 12 days on a low phosphate diet showed higher levels of gene expression in the hypophosphatemia groups (p < 0.001) and a 3 to 6 hour elongation of the circadian cycle. A comparative analysis of the callus tissue transcriptome genes that were differentially regulated by hypophosphatemia with published data for the genes in bone that are diurnally regulated identified 1879 genes with overlapping differential regulation, which were shown by ontology assessment to be associated with oxidative metabolism and apoptosis. Network analysis of the central circadian pathway genes linked their expression to the up regulated expression of the histone methyltransferase gene EZH2, a gene that when mutated in both humans and mice controls overall skeletal growth. These data suggest that phosphate is an essential metabolite that controls circadian function in both skeletal and non skeletal peripheral tissues and associates its levels with the overall oxidative metabolism and skeletal growth of animals.


Assuntos
Proteínas CLOCK/genética , Ritmo Circadiano/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Hipofosfatemia/genética , Animais , Apoptose/genética , Relógios Circadianos/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Hipofosfatemia/metabolismo , Hipofosfatemia/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Fosfatos/metabolismo , Esqueleto/crescimento & desenvolvimento , Esqueleto/metabolismo , Transcriptoma/genética
14.
J Cell Physiol ; 233(9): 7007-7021, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29380368

RESUMO

The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/ß and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR.


Assuntos
Osso Esponjoso/efeitos dos fármacos , Osso Cortical/efeitos dos fármacos , Compostos de Trialquitina/farmacologia , Animais , Calcificação Fisiológica/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , PPAR gama/metabolismo , Receptores X de Retinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
J Orthop Res ; 36(4): 1153-1163, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28971515

RESUMO

A targeted proteomic analysis of murine serum over a 35-day course of fracture healing was carried out to determine if serum proteomic changes could be used to monitor the biological progression of fracture healing. Transverse, closed femoral fractures where generated and stabilized with intramedullary fixation. A single stranded DNA aptamer-based multiplexed proteomic approach was used to assay 1,310 proteins. The transcriptomic profiles for genes matching the 1,310 proteins were obtained by microarray analysis of callus mRNA. Of the 1,310 proteins analyzed, 850 proteins showed significant differences among the time points (p-value <0.05). Ontology assessment associated these proteins with osteoblasts, monocyte/macrophage lineages, mesenchymal stem cell lines, hepatic tissues, and lymphocytes. Temporal clustering of these data identified proteins associated with inflammation, cartilage formation and bone remodeling stages of healing. VEGF, Wnt, and TGF-ßsignaling pathways were restricted to the period of cartilage formation. Comparison of the proteomic and transcriptomic profiles showed that 87.5% of proteins in serum had concordant expression to their mRNA expression in the callus, while 12.5% of the protein and mRNA expression patterns were discordant. The discordant proteins that were elevated in the serum but down regulated in callus mRNA expression were related to clotting functions, allograft rejection, and complement function. While proteins down regulated in the serum and elevated in callus mRNA were associated with osteoblast function, NF-ĸb, and activin signaling. These data show the serum proteome may be used to monitor the different biological stages of fracture healing and have translational potential in assessing human fracture healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1153-1163, 2018.


Assuntos
Biomarcadores/sangue , Consolidação da Fratura , Proteoma , Animais , Osso e Ossos/patologia , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/patologia , Masculino , Camundongos Endogâmicos C57BL , Radiografia
16.
J Orthop Res ; 36(3): 945-953, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28833572

RESUMO

Radiographic Union Score for Tibia (RUST) and modified RUST (mRUST) are radiographic tools for quantitatively evaluating fracture healing using a cortical scoring system. This tool has high intra-class correlation coefficients (ICCs); however, little evidence has evaluated the scores against the physical properties of bone healing. Closed, stabilized fractures were made in the femora of C3H/HeJ male mice (8-12 week-old) of two dietary groups: A control and a phosphate restricted diet group. Micro-computed tomography (µCT) and torsion testing were carried out at post-operative days (POD) 14, 21, 35, and 42 (n = 10-16) per group time-point. Anteroposterior and lateral radiographic views were constructed from the µCT scans and scored by five raters. The raters also indicated if the fracture were healed. ICCs were 0.71 (mRUST) and 0.63 (RUST). Both RUST scores were positively correlated with callus bone mineral density (BMD) (r = 0.85 and 0.80, p < 0.001) and bone volume fraction (BV/TV) (r = 0.86 and 0.80, p < 0.001). Both RUST scores positively correlated with callus strength (r = 0.35 and 0.26, p < 0.012) and rigidity (r = 0.50 and 0.39, p < 0.001). Radiographically healed calluses had a mRUST ≥13 and a RUST ≥10 and had excellent relationship to structural and biomechanical metrics. Effect of delayed healing due to phosphate dietary restrictions was found at later time points with all mechanical properties (p < 0.011), however no differences found in the RUST scores (p > 0.318). Clinical relevance of this study is both RUST scores showed high correlation to physical properties of healing and generally distinguished healed vs. non-healed fractures. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:945-953, 2018.


Assuntos
Fraturas do Fêmur/diagnóstico por imagem , Consolidação da Fratura , Radiografia/métodos , Animais , Fenômenos Biomecânicos , Masculino , Camundongos Endogâmicos C3H , Osteogênese , Fosfatos/deficiência , Projetos de Pesquisa , Microtomografia por Raio-X
17.
Arthritis Res Ther ; 19(1): 179, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28764769

RESUMO

BACKGROUND: Lysyl oxidase like-2 (LOXL2) is a copper-dependent amine oxidase. Our previous studies showed that LOXL2 is elevated during mouse fracture healing. The goal of this study was to evaluate the potential of LOXL2 to act as an anabolic agent in cartilage affected by osteoarthritis (OA). METHODS: LOXL2 was visualized in tissues from human knee and hip joints and temporomandibular joints (TMJ) by immunofluorescence. The activity of LOXL2 in human articular and TMJ chondrocytes was assessed by cell-based assays, microarray analysis, and RT-qPCR, and LOXL2-mediated activation of NF-κB and extracellular signal-related kinase (ERK) signaling pathways was measured by western blotting. To examine LOXL2-induced effect in vivo, we implanted Matrigel-imbedded human chondrocytes into nude mice and exposed them to exogenous LOXL2 for 6 weeks. Finally, LOXL2-induced effects on collagen type 2 α1 (COL2A1) and phospho-SMAD2/3 were evaluated by immunofluorescence analysis. RESULTS: LOXL2 staining was detected in damaged regions of human TMJ, hip and knee joints affected by OA. Stimulation with transforming growth factor (TGF)-ß1 upregulated LOXL2 expression, while pro-inflammatory cytokines IL-1ß and TNF-α downregulated LOXL2, in human chondrocytes. Viral transduction of LOXL2 in OA chondrocytes increased the mRNA levels of chondroitin sulfate proteoglycan (CSPG4), aggrecan (ACAN), sex determining region Y-box containing gene 9 (SOX9), and COL2A1 but reduced the levels of extracellular matrix (ECM)-degrading enzymes matrix metalloproteinase (MMP)1, MMP3, and MMP13. Further, forced expression of LOXL2 promoted chondrogenic lineage-specific gene expression, increased the expression of COL2A1 in the presence of TNF-α, and inhibited chondrocyte apoptosis. LOXL2 expression also inhibited IL-1ß-induced phospho-NF-κB/p65 and TGF-ß1-induced ERK1/2 phosphorylation. Matrigel constructs of human chondrocytes from the knee joint and TMJ implanted in nude mice showed anabolic responses after LOXL2 transduction, including increased expression of SOX9, ACAN, and COL2A1. Finally, immunofluorescence staining revealed co-localization of LOXL2 with SOX9 in the nuclei of cells in the implants, decreased phospho-SMAD2/3, and increased COL2A1 staining. CONCLUSION: Our results suggest that although LOXL2 is upregulated in cartilage affected by OA, this may be a protective response that promotes anabolism while inhibiting specific catabolic responses in the pathophysiology of OA.


Assuntos
Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Osteoartrite/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Articulação Temporomandibular/metabolismo , Animais , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Interleucina-1beta/farmacologia , Camundongos Nus , Osteoartrite/genética , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
18.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2369-2377, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28847510

RESUMO

Activin A receptor type I or activin receptor-like kinase 2 (ACVRI/ALK2) belongs to type I TGF-ß family and plays an important role in bone development. Activating mutations of ALK2 containing the R206 to H mutation, are present in 95% in the rare autosomal genetic disease fibrodysplasia ossificans progressiva (FOP), which leads to the development of ectopic bone formation in muscle. The effect of AMP-activated protein kinase (AMPK) activation on ALK2R206H-mediated signaling in fibroblasts obtained from a FOP patient was assessed in the present study. The activity of the mutated ALK2 was suppressed by pharmacological AMPK activators such as metformin and aspirin, while their actions were blocked by the dominant negative mutant of AMPK and mimicked by the constitutively active mutant of AMPK. Furthermore, activation of AMPK upregulated Smad6 and Smurf1 and thereby enhanced their interactions, resulting in its proteosome-dependent degradation of ALK2. In contrast, knockdown of Smad6 or Smurf1 prevented metformin-induced reduction of ALK2. To evaluate the biological relevance of AMPK action on ALK2 activity, we induced FOP fibroblasts into iPS cells and found that their osteogenic differentiation in vitro was inhibited by metformin. Our studies provide novel insight into potential approaches to treatment of FOP, since several AMPK activators (e.g. metformin, berberine, and aspirin) are already in clinical use for the treatment of diabetes and metabolic syndromes.


Assuntos
Receptores de Ativinas Tipo I/genética , Miosite Ossificante/genética , Proteínas Quinases/genética , Proteína Smad6/genética , Ubiquitina-Proteína Ligases/genética , Quinases Proteína-Quinases Ativadas por AMP , Diferenciação Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metformina/administração & dosagem , Mutação , Miosite Ossificante/patologia , Osteogênese/genética , Transdução de Sinais/efeitos dos fármacos
19.
J Biomech Eng ; 139(7)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28492928

RESUMO

Injury to the growth plate is associated with growth disturbances, most notably premature cessation of growth. The goal of this study was to identify spatial changes in the structure and composition of the growth plate in response to injury to provide a foundation for developing therapies that minimize the consequences for skeletal development. We used contrast-enhanced microcomputed tomography (CECT) and histological analyses of a murine model of growth plate injury to quantify changes in the cartilaginous and osseous tissue of the growth plate. To distinguish between local and global changes, the growth plate was divided into regions of interest near to and far from the injury site. We noted increased thickness and CECT attenuation (a measure correlated with glycosaminoglycan (GAG) content) near the injury, and increased tissue mineral density (TMD) of bone bridges within the injury site, compared to outside the injury site and contralateral growth plates. Furthermore, we noted disruption of the normal zonal organization of the physis. The height of the hypertrophic zone was increased at the injury site, and the relative height of the proliferative zone was decreased across the entire injured growth plate. These results indicate that growth plate injury leads to localized disruption of cellular activity and of endochondral ossification. These local changes in tissue structure and composition may contribute to the observed retardation in femur growth. In particular, the changes in proliferative and hypertrophic zone heights seen following injury may impact growth and could be targeted when developing therapies for growth plate injury.


Assuntos
Fêmur/lesões , Lâmina de Crescimento/patologia , Animais , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Lâmina de Crescimento/diagnóstico por imagem , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/fisiopatologia , Masculino , Fenômenos Mecânicos , Camundongos , Camundongos Endogâmicos C57BL , Suporte de Carga , Microtomografia por Raio-X
20.
Toxicol Sci ; 158(1): 63-75, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398592

RESUMO

Organotins are industrial chemicals and agricultural pesticides, and they contaminate both outdoor and indoor environments. Organotins are detectable in human sera at biologically active concentrations and are immuno-and neuro-toxicants. Triphenyltin, tributyltin (TBT) and dibutyltin activate peroxisome proliferator-activated receptor γ in bone marrow multipotent mesenchymal stromal cells and promote adipogenesis. TBT also has been shown to suppress osteogenesis; osteoblasts not only support bone homeostasis but also support B lymphopoiesis. In addition, developing B cells are highly sensitive to exogenous insults. Thus, we hypothesized that bone marrow B cells may be negatively affected by TBT exposure both directly, through activation of apoptosis, and indirectly, through alterations of the bone marrow microenvironment. TBT activated apoptosis in developing B cells at environmentally relevant concentrations (as low as 80 nM) in vitro, via a mechanism that is distinct from that induced by high dose (µM) TBT and that requires p53. TBT suppressed the proliferation of hematopoietic cells in an ex vivo bone marrow model. Concurrent treatment of stromal cells and B cells or pretreatment of stromal cells with TBT induced adipogenesis in the stromal cells and reduced the progression of B cells from the early pro B (Hardy fraction B) to the pre B stage (Hardy fraction D). In vivo, TBT induced adipogenesis in bone marrow, reduced "aging-sensitive" AA4+CD19+ B cells in bone marrow, and reduced splenic B cell numbers. Immunosenescence and osteoporosis are adverse health effects of aging, we postulate that TBT exposure may mimic, and possibly intensify, these pathologies.


Assuntos
Linfócitos B/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Adipogenia/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/citologia , Relação Dose-Resposta a Droga , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...